- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Abouzied, Azza (1)
-
Haas, Peter J (1)
-
Haque, Riddho R (1)
-
Mai, Anh (1)
-
Meliou, Alexandra (1)
-
Vittis, Vasileios (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Kara, Ahmet (1)
-
Roy, Sudeepa (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Roy, Sudeepa; Kara, Ahmet (Ed.)Decision makers in a broad range of domains, such as finance, transportation, manufacturing, and healthcare, often need to derive optimal decisions given a set of constraints and objectives. Traditional solutions to such constrained optimization problems are typically application-specific, complex, and do not generalize. Further, the usual workflow requires slow, cumbersome, and error-prone data movement between a database, and predictive-modeling and optimization packages. All of these problems are exacerbated by the unprecedented size of modern data-intensive optimization problems. The emerging research area of in-database prescriptive analytics aims to provide seamless domain-independent, declarative, and scalable approaches powered by the system where the data typically resides: the database. Integrating optimization with database technology opens up prescriptive analytics to a much broader community, amplifying its benefits. We discuss how deep integration between the DBMS, predictive models, and optimization software creates opportunities for rich prescriptive-query functionality with good scalability and performance. Summarizing some of our main results and ongoing work in this area, we highlight challenges related to usability, scalability, data uncertainty, and dynamic environments, and argue that perspectives from data management research can drive novel strategies and solutions.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
